نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه مدیریت دانشکده مدیریت دانشگاه تهران

2 دانشیار گروه ریاضی، دانشگاه آزاد اسلامی واحد علوم تحقیقات، تهران

3 دانشیار گروه ریاضی، دانشگاه آزاد اسلامی واحدتهران شمال

4 استادیار گروه مدیریت ، دانشگاه ولی عصررفسنجان

چکیده

ارزیابی عملکرد از ضروریات هر سازمانی به منظور برنامه­ریزی و کنترل است. ارزیابی بانک­ها عملکردشان مستقیم و غیرمستقیم روی کیفیت زندگی افراد تاثیر می­گذارد، عمدتا با مدل­های تحلیل پوششی داده­ها انجام می­گیرد. بانک­ها همانند بسیاری از سازمان­ها دارای یک ساختار شبکه­ای دومرحله­ای هستند. از آنجا که مدل­های سنتی تحلیل پوششی داده­ها به دلیل عدم توجه به ساختار داخلی و دیدگاه جعبه سیاه از ارزیابی چنین ساختاری ناتوان هستند و نمی­توانند منبع عدم کارایی را به خوبی مشخص کنند، در این تحقیق ابتدا یک مدل تحلیل پوششی داده­های شبکه­ای شعاعی و سپس بر مبنای ایده راسل یک مدل غیرشعاعی توسعه داده شد. در مرحله بعد از مدل غیرشعاعی ارائه شده در یک مطالعه کاربردی و تجربی جهت ارزیابی ساختار دومرحله­ای 30 بانک شامل مرحله جمع­آوری سپرده و مرحله سوداوری استفاده شد. همچنین ریسک فعالیت­های بانکی با در نظر گرفتن اقساط معوقه به عنوان خروجی نامطلوب مورد توجه قرار گرفت. نتایج کارایی مراحل و شبکه نشان می­دهد که مدل مقاله، ارزیابی بهتری از عملکرد بانک­ها ارائه می­کند و منبع عدم کارایی را بهتر مشخص می­کند. مدل­های ارائه­شده را می­توان به ساختارها و کاربردهای دیگر نیز توسعه داد.

کلیدواژه‌ها

عنوان مقاله [English]

Designing a Non-Oriented NDEA for Performance Evaluation

نویسندگان [English]

  • Mansor Momeni 1
  • Hosein Safari 1
  • Mohsen Rostami 2
  • Amin Mostafaee 3
  • Reza Soleymani-Damaneh 4

1 Professor, Faculty of Management, University of Tehran

2 Associate Professor, Faculty of Mathematics, Islamic Azad University, Tehran

3 Assistant Professor , Department of Mathematics, Islamic Azad University, Tehran

4 Ph.D. Student in Industrial Management, Faculty of Management University of Tehran

چکیده [English]

Performance evaluation for each organization is necessary to plan and control. Banks are part of public service and their performance influences peoples life quality, and their performance evaluation is mostly done with DEA models. As other organizations banks include a two-staged network structure. The traditional DEA models are inefficient for evaluation because of not paying attention to internal structure and black-box perspective and can't determine the source of inefficiency well, so in this research first an oriented NDEA model and then a non-oriented model based on Russell idea were developed. In next stage, the presented non-oriented model was used in an applied and experimented study for performance evaluation of 30 banks two-staged structure including deposit-collecting stage and profit-making stage. Also, the risk of banks activities was considered with regard to delayed payments as undesirable output. The result of stages and network efficiency show the research model gives a better evaluation of banks performance. The presented models can be developed to other structures and applications.

کلیدواژه‌ها [English]

  • Performance evaluation
  • NDEA
  • Non-Oriented Models
  • Banks

آذر، عادل و سپهری­راد، رامین. (1390)، ارائه مدل ریاضی ارزیابی عملکرد 360 درجه (پیمایشی در سازمان ملی بهره­وری)، فصلنامه مطالعات مدیریت بهبود و تحول، 66، 1-23.

رمضانیان، محمدرحیم، یاکیده، خسرو و اویسی، اکرم. (1391). تبین الگوی ارزیابی خودمبنا و مستمر عملکرد. فصلنامه مطالعات مدیریت بهبود و تحول، 68، 1-16.

محمدیان، محمود و امین، فرشته. (1386). مدلی برای رتبه­بندی مشتریان در صنعت بانک­داری به منظور اجرایی نمودن مدیریت روابط با مشتری (CRM)(بررسی موردی بانک ملت). فصلنامه مطالعات مدیریت (بهبود و تحول)، 56، 141-171.

 Akther, S., Fukuyama, H., & Weber, W.L. (2013), “Estimating two-stage network slacks-based inefficiency: An application to Bangladesh banking”, Omega, 41(1), 88-96.

Amirteimoori, A., Despotis, D. K., Kordrostami, S. & Azizi, H. (2016), “Additive models for network data envelopment analysis in the presence of shared resources”, Transportation Research Part D, http://dx.doi.org/10.1016/j.trd.2015.12.016.

Avkiran, N., Mccrystal, A. (2014), “Dynamic network range-adjusted measure vs. dynamic network slacks-based measure”, Journal of the Operations Research Society of japan,57(1),1-14.

Avkiran, N.K., (2015), “An illustration of dynamic network DEA in commercial banking including robustness tests”, Omega 55, 141-150.

Avkiran, N.K. (2009), “Opening the black box of efficiency analysis: An illustration with UAE banks”, Omega, 37, 930-941.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978), “Measuring the efficiency of decision-making units”. European Journal of Operational Research, 2, 429-444.

Chen, Y, Liang, L., Yang, F. & Zhu, J. (2006). Evaluation of information technology investment: a data envelopment analysis approach, Computers & Operations Research, 33, 1368-1379.

Chen, Y., and Zhu, J. (2004). Measuring Information technology Indirect Impact on Firm Performance, Information Technology, and Management, 5, 9-22.

Chen, Y., Cook, W. D., & Zhu, J. (2010). Deriving the DEA frontier for two-stage processes. European Journal of Operational Research, 202, 138-142.

Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. European Journal of Operational Research, 196, 1170-1176.

Cook, W. D., Hababou, M., Tuenter, H.J.H. (2000). Multicomponent efficiency measurement and shared inputs in DEA: an application to sales and service performance in bank branches. Journal of Productivity Analysis, 14, 209-224.

Cook, W. D., Zhu, J., Bi, G. B., & Yang, F. (2010). Network DEA: Additive efficiency decomposition. European Journal of Operational Research, 207, 1122-1129.

Despotis, K. D., Sotiros, D., Koronakos, G. (2015). A Network DEA approach for series multi-stage process. Omega.

Despotis, K., D., Koronakos, G., Sotiros, D. (2016). Composition versus decomposition in two-stage network DEA: a reverse approach. Journal of Productivity Analysis, 45: 71-87.

Ebrahimnejad, A., Tavana, M., Hosseinzadeh Lotfi, F., Shahverdi, R. and Yousefpour, M. (2014). A three-stage Data Envelopment Analysis model with application to banking industry, Measurement, 49, 308-319.

Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of research in efficiency and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Economic Planning Sciences, 42, 151-157.

Fare, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34, 35-49.

Fukuyama, H., & Matousek, R. (2016). Modelling Bank Performance: A Network DEA Approach, European Journal of Operational Research, doi: 10.1016/j.ejor.2016.10.044

Fukuyama, H., & Weber, W.L. (2010). A slacks-based inefficiency measure for a two stage system with bad outputs. Omega, 38, 398-409.

Fukuyama, H., & Weber, W.L. (2016). Japanese bank productivity, 2007-2012: A dynamic network approach. Mimeo.

Holod, D., & Lewis, H. F. (2011). Resolving the deposit dilemma: A new DEA bank efficiency model. Journal of Banking and Finance, 35, 2801-2810.

Huang, J., Chen, J. and Yin, Z. (2014). A Network DEA Model with Super Efficiency and Undesirable Outputs: An Application to Bank Efficiency in China, Mathematical Problems in Engineering (DOI: 10.1155/2014/793192).

Jahanshahloo, G. R., Amirteimoori, A. R., & Kordrostami, S. (2004). Measuring the multi-component efficiency with shared inputs and outputs in data envelopment analysis. Applied Mathematics and Computation, 155, 283-293.

Jalili Naini, S.G., Moini, A. and Rezaee, M.J. (2013). Nash bargaining game model for two parallel stages process evaluation with shared inputs, International Journal of Advanced Manufacturing Technology, 67, 475-484.

Kaffash, S. & Marra, M. (2016). Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds, annals operations research, DOI: 10.1007/s10479-016-2294-1.

Kao, C. (2009a). Efficiency decomposition in network data envelopment analysis: A relational model. European Journal of Operational Research, 192, 949-962.

Kao, C. (2009b). Efficiency measurement for parallel production systems. European Journal of Operational Research, 196, 1107-1112.

Kao, C. (2014). Efficiency decomposition for general multi-stage systems in data envelopment analysis. European Journal of Operational Research, 232, 117-124.

Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research, 185, 418-429.

Kao, C., & Hwang, S. N. (2010). Efficiency measurement for network systems: IT impact on firm performance. Decision Support Systems, 48, 437-446.

Kao, C., & Liu, S. T. (2014). Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks. Omega, 47, 90-98.

Kong, W.H., Fu, T.T., Yu, M.M. (2017). International Journal of Information Technology & Decision Making, (DOI: 10.1142/S0219622017500031).

Lin, T. Y., & Chiu, S. H. (2013). Using independent component analysis and network DEA to improve bank performance evaluation. Economic Modelling, 32, 608-616.

Liu, J. S., & Lu, W. M. (2012). Network-based method for ranking of efficient units in two-stage DEA models. Journal of the Operational Research Society, 63, 1153-1164.

Liu, J. S., Lu, L. Y., Lu, W. M. & Lin, B. j. (2013). A survey of DEA applications. Omega, 41, 893-902.

Liu, W., Zhou, Z., Ma., C., Liu, D., Shen, W. (2015). Two-stage DEA models with undesirable input-intermediate-outputs. Omega, 56: 74-87.

Lozano, S. (2016). Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector. Omega, 60, 73-84.

Luo, X. M. (2003). Evaluating the profitability and marketability efficiency of large banks: An application of data envelopment analysis. Journal of Business Research, 56, 627-635.

Ma, C., Liu, D., Zhou, Z., Zhao, W. and Liu, W., Game Cross Efficiency for systems with Two-stage Structures, Journal of Applied Mathematics, (DOI: 10.1155/2014/747596).

Matthews, K. (2013). Risk management and managerial efficiency in Chinese banks: A network DEA framework, OMEGA, 41, 207-215.

Seiford, L. M., & Zhu, J. (1999). Profitability and marketability of the top 55 US commercial banks. Management Science, 45, 1270-1288.

Shahwan, T. M. & Hassan, Y.M. (2013). Efficiency analysis of UAE banks using data envelopment analysis, Journal of Economic and Administrative Sciences, 29, 4-20.

Silva, T.C.S., Tabak, B.M., Cajueiro, D. O. & Dias, V. B. (2016). A Comparison of DEA and SFA using micro- and macro-level perspectives: efficiency of Chinese local banks, Physica A, (DOI: 10.1016/j.physa.2016.11.041).

Sufian, F. & Kamarudin, F. (2017). Forced Mergers on Bank Efficiency and Productivity: Evidence from Semi-parametric Malmquist Productivity Index, Global Business Review, 8, 19-44.

Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197, 243-252.

Tsolas, I.E. (2010). Modeling bank branch profitability and effectiveness by means of DEA, International Journal of Productivity and Performance Management, 59, 5, 432-451.

Wacker, J. G. (1998). A definition of theory: research guidelines for different theory-building research methods in operations management. Journal of Operations Management, 16(4), 361-385.

Wang, K, Huang, W, Wu, J, Liu, YN. (2014). Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega, 44,5-20.

Wanke, p. and Barros, C. (2014). Two-stage DEA: An application to major Brazilian Banks, Expert Systems with Applications, 41, 2337-2344.

Yang, C. and Liu, H.M. (2012). Managerial efficiency in Taiwan bank branches: A network DEA, Economic Modelling, 29, 450-461.

Yang, X., & Morita, H. (2013). Efficiency improvement from multiple perspectives: An application to Japanese banking industry. Omega, 41(3), 501-509.

Zha, Y. and Liang, L. (2010). Two-stage cooperation model with input freely distributed among the stages, European Journal of Operational Research, 205, 332-338.

Zha, Y., Liang, N., Wu, M. & Bian, Y. (2016). Efficiency evaluation of banks in china: A dynamic two-stage slacks-based measure approach, Omega, http://dx.doi.org/10.1016/j.omega.2014.12.008.